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SYMBOLS 

Geometry parameter 

Linear strains in meridional and circumferential directions 

Modulus of elasticity 

Shell thickness 

4P 

Meridional and circumferential stress couples 

Meridional and circumferential stress resultants 

Meridional and normal loading components 

Transverse shear 

Radius of a parallel circle 

Principal radii of curvature 

Time 

Meridional and normal displacements 

Mass density of shell material 

Poisson's ratio 
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INTRODUCTION 

The dynamic behavior of shells of revolution becomes increasingly 

important in the space vehicle designs. Most of the investigations have 

been focused on shells having constant curvature. Very limited analyti- 

cal work can be found in the literature concerning the shells having non- 

constant curvature. In many cases, such shells with variable curvature 

may be more desirable &rom both structural and aerodynamic view points. 

The simplest surface of non-constant curvature will be the paraboloid 

of revolution. Hoppmann, Cohen and Kunukkasseril [l] indicated the pro- 

cedure for formulating the problem. The resulting equations includes two 

coupled partial differential equations with non-constant coefficients. 

The authors indicated that the non-constant coefficients are extremely 

complicated and no detailed expressions were given. 

Johnson and Reissner [2] has provided a formula for the frequency 

of paraboloidal shells of revolution, however, the result is restricted 

to shallow paraboloid. Lin and Lee [3] discussed the free vibration of 

paraboloidal shells of revolution based on an inextensional theory. 

Kalnins [4] presented a numerical procedure similar to Goldberg, Bogdanoff 

and Marcus [5,6] for the free vibration of rotationally symmetric shells. 

The present report provides the derivation of the equations of axi- 

symmetric motion for paraboloidal shells of revolution according to the 

linear theory of shells. A method of procedure according to the finite 

difference technique for the investigation of the free vibration of the 

shell is presented. The results presented in the report should be useful 

for the future interested investigators. 



GENERAL THEORY 

The meridional lines and parallel circles which coincide with the 

lines of principal curvature are used as coordinate system. The geometry 

and some symbols are shown in Figure 1. The surface of a paraboloid of 

revolution is represented by the equation 

a r=- 2 set Y (1) 

The radii of curvature in the cp and 8 directions respectively are 

Rl 2 
3 = a set cp (2) 

R2 = t set cp 

where a is a constant. The surface becomes flatter as the value of a 

increases. According to Kirchkoff-Love assumptions, the equations of 

axisymmetric motion based on bending theory of shells are 

(3) 

$q (NW tancp) - Nee sec2cp - Q tancp +: sec3cptancp 3% Pv-ph - 
at2/ 

- 0 (4). 

N 
w 

tancp + N ee sec3cp sincp + $(Q tancp) 

+; sec3cp 22 =(-J 
at2 > 

tancp) - Mee sec2cp - ; Q sec3cp tancp = 0 (6) 

where N 
w 

and Nee are stress resultants, M and M 
w 88 are stress couples, 

Q is the transverse shear, p 
tp 

and.pn are loading components, v and w are 

displacement components, p is the material density, and h is the thick- 

ness of the shell. 



Fig. (1) Geometry 
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The stress-strain and moment-curvature relationships are 

N =Eh 
VP 1-v* "cpcp 

f veee) 

(eee f "'cpcp' 

(7a) 

(7b) 

Mef3 = D(xee + ““(pp) 

where E is the modulus of elasticity, v is the Poisson's ratio, and D is 

the plate rigidity. The strain displacement relationships are 

ew = ; c&p ($ - w) 

eee =‘i cosql (coup v-w) 

and the changes of curvature and displacement relationships are 

2* 5 
%P=- a 0 cos cp 1 ( coscp g + $) - 3 sincp 

acp 
(v + $91 

2* uee = - a 0 cos4cp cotcp (v + $) 

(94 

(9b) 

(104 

By substituting Equations (9) and (10) into Equations (7) and (8), 

one obtains the following relationships 

N = 2Eh 3 au 
w a(l-v*) 

cos cp - -I- v coscp cotcp u - (cos3cp + v 
acp 

coscp)w 1 Wa) 

Nf3e = 
2Eh 3 au 

a(l-v*) 
cosy cotcp u + v cos cp - - (coscp I- v 

acp 
cos3tp)w 1 Wb) 
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M 2 Z-D- 
(PIP 0 

2 a cos5ql [cos cp ($ + $) 

Me0 = - 22 D 2 0 cos5y 

Wb) 

By eliminating the transverse shear, Q, between Equations (4) and 

(6) a and between Equations (5) and (6), and then substituting Equations 

(11) and (12) into the resulting equations, one obtains the following 

two partial differential equations governing the displacements v and w: 

Blw'& + B2wn + B3w’ + B4w + B5v' + B6v' + B7v + B8 a2'Y = 
at2 

0 (13) 

CIWIV + c2w11J + c3wa + c4w’ + c5w + C6VI” + C,V” 

a2w +c8v’+cgv+c10-=o 
at2 

where 

(14) 

B1 
9 2 = Sj cos cp sin cp 

a 

B2 a3 = 8D cos8cp sincp (l-5 sin2tp)] 

B3 = 2 cos7cp (18 sin4q i 6 sin2q + 9w sin2cp - 1) 
a 

2Eh 
a(l-v2) 

coscp sin29 ' <cos2cp f v) 
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B4 = 2Eh 

a(l-v2) 
sin3cp (1 + 3 cos2q) 

8D 12 : 2 B5 = 3 cos cp sin cp + 2Eh 3 co6 cp sin2cp 
a a(l-v2) 

B6 = Sj cos8cp sincp (2-v-9 sin2cp) + 2Eh 

a a(l-v2) 
c0S2cp sincp (1-3 sin2cp) 

B7 = $ cos7cp (18 sin4q - 6 sin2tp + 9p sin2cp-1) 
a 

2Eh 

a(l-v2) 
coscp (1 + v sin2cp) 

2 
B8 = - ph a sin (0 

2 cos3cp 

24D 12 Cl = - --7y cos v 
a 

8D 10 

c2 = 2 cos 
cp coscp (21 sin2cp - 3 cos2cp - coscp sinrp + v) 

c3 = % cos2cp cot2cp (-47 cos'cp sin4cq + 25 cos8cp sin2cp 
a 

+ 4v cos6cp sin2cp + 8 cos7cp sin3cp - cos'cp sincp - 7V cos'cp sincp 

+ cos6cp - 3v sin3cp) 

c4 = 2 cos6cp cot3cp (72 sin6cp - 84 cos2cq sin4cp + 6 cos4cp sin2q 
a 

- 6v sin4cp + v cos2cp sin2cp - 21 coscp sin'cp + 6 cos3cp sin3rp 

+ 7v coscp sin3cp.- 6 sin2cp - cos2cp) 
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c5 = - 2Eh 

a(l-v2) 
.os2cp (cos4tp + 2v cos2ql + 1) 

C6 = Cl = 

c7 = c2 = 

'8 = c3 + 

c9 = c4 + 

$-)= - Ph 

_ 24D cosl2 
3 cp 

a 

u coslo 
3 cp cotcp (21 liI12tp - 3 .os2cp - coscp sincp + v) 

a 

2Eh 

a(l-v2) 
.os4, (cos2cp + v) 

2Eh 

a(l-v2) 
cos2cp cotcp (v cos2cp + 1) 

(15) 

The primes represent partial derivatives with respect to CJJ and dots 

denote time derivatives. 

For very thin shells, the bending effect becomes negligibly small. 

The equations of axisymmetric motion of a paraboloidal shell of revolution 

based on membrane theory can be reduced immediately from Equation (13) 

and (14) by taking the plate rigidity D = 0. The resulting equations are 

alw' + a2w + blv" + b2v' + b3v - Av = pl(q,t) a2yE-2) 

a3w + b4v' + b5v - Aij = p 
n (v,t) a2(&-hJ2) 

where 

al = - cos4cp (cos2cp + v) 

a2 = cos3cq sincp (1 + 3 cos2~) 

7 
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a3 = - cos21p (cos4qJ + 2v cos2cp + 1) 

bl = cos6cp 

b2 = cotcp cos4cg (1 - 3 si.n2y) 

b3 = - cot2cp C0S2Cp (1 + v sin2cp) 

b4 = cos4cp <cos2cp + v) 

b5 = cotcp cos2cp (1 + v cos2cp) 

A = pa2,(l-v2)/4E (18) 

8 



FREE VIBRATION 

The axisymmetric motion corresponding to the free vibration of the 

shell is considered to be harmonic. The displacements take the following 

form 

v = V(cp)eiult 

w = W(rp)eiwt 

(19) 

(20) 

where u) represents the circular frequencies of the shell. 

I. Bending Theory 

By substituting Equations (19) and (20) into Equations (13) and (]:I) 

withp =p ln = 0, one obtains the following simultaneous ordinary differ- 

ential equations: 

BlW"' + B2WN + B3W' + B4W + B5V" + B6V' + (B7-B8w2)V = 0 

clw IV + c2w "' + c3wn + c4w' + c5w + C6V"' + C7VN 

+ cp - CIOLu%J = 0 

(%I) 

! ‘2; 

Elimination of VU' term between Equations (21) and (22) yields the fclllo\,- 

ing equation 

*lW Iv + A2W 'I' + A3W" + A4W' + A5W + A6V" + A7V' + A8V = 0 (>!3) 

where 

*1 = C6Bl - B5Cl 
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A2 = C 6 (B. 1'+B2) -B5C2 

A3 = C6(B2' + B3) - B5C3 

A4 = C6(B3‘ + B4) - B5C4 

A5 = C6B4‘ - B5(C5 - 
2 

Glow ) 

A6 = C6(B5' + B6) - B5C7 

A7 = Cf,(B6 ' + B7 - B8u2) - B5C8 

A8 
I2 

= Cg(B7’ - B8 w ) - B5Cg (24) 

By introducing the new variable 

u = w” (25) 

Equations (21) and (23) become 

BIU' + B2U + B3W' + B4W + B5V" + B6V' + (B7-B8w2)V = 0 (26) 

AIUN + A2U' + A3U + A4Wf + A5W + A6V" + A7V' + A8V = 0 (27) 

The difference equations equivalent to Equations (25), (26) and (27) 

according to the following approximations for the first and second deriva- 

tives: 

F.' 
3 = ~ (Fj+l - Fj_1) (28) 

F . " = L (Fj+l - 2Fj + Fj-1) 
J A2 

(29) 
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become 

where 

W. 
3 

Exj3 j 
= v 

I1 

U. 
J 

{x,] = {X(jA)] j = O,l;***N 

and A = LICP is the mesh size. 

The coefficient matrices, a j, Bj' and Yj' in Equation (30) are 

r 2 

Bj = B4j 

-1 0 0 

B3j 

B5. B6. 

d+Tf 
k 

A2 2A 

i 

2B . 

0 A2 

B2j - -$ + B7j - Bgju2 

A _ 2A6i 
5j A2 + A8j ( 

2Ali 

A2 + A3j ) 

(30) 

(314 

(31b) 

(32) 

(33) 
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-1 0 0 

(34) 

When the shell is closed at the apex, it is obvious that v = 0 and 

aw -=Oatcp * = 0 because of synrmetry. From the condition that 

M 
w = Mee 

and 

N 
w= Nee 

(3% 

(35b) 

at the apex of the shell, the following conditions are obtained in con- 

junction with Equations (11) and (12): 

a2w $=O and z=O at cp=O (36) 

Therefore, one obtains 

wO = WI 

v. = 0 

u. = 0 

or 

(37) 

xO = ROXl 

12 
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where R o=[l 0 O-J. If the shell is not closed at the apex, R. will be 

different from different supporting conditions. The recurrence relation- 

ship for other interior points may be established as follows according to 

Equation (30).in conjunction with Equation (38): 

X 
j 

= R.X 
3 j+l 

where 

j=1,2***N 

(39) 

(40) 

and 

R. = [l 0 01 (41) 

The boundary conditions, in finite difference form, along the open end may 

be written in the following form: 

(42) 

where N+l represents the imaginary point off the edge of the shell. The 

form of the coefficient matrices, c,, 'Q,, and sN depend on the supporting 

conditions. It may be shown that 5, z-5, for 

(a> simply supported boundary conditions 

w= 0 

v= 0 

M =O 
w 

(43) 
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(b) Fixed edge boundary conditions 

w- 0 

v= 0 

g-0 

By substituting Equation (39) into Equation (42), one obtains 

(44) 

(45) 

Equation (45) represents a system of three simultaneous homogeneous alge- 

braic equations, The elements of the coefficient matrix contain the 

natural circular frequency, w, of the system. For non-trivial solution 

of Equation (45), the determinant of the coefficient matrix must vanish. 

Hence the frequency equation of the shell according to bending theory 

becomes 

k, + (7\, + s,l$+,)~I = ’ (46) 

An iterative procedure similar to the one used in [7] may be used for 

determining the frequencies of the shell. 

II. Membrane Theory 

In a similar procedure as presented in I, the following equations 

are obtained after the substitution of Equations (19) and (20) into 

Equations (16) and (17) with pl = p, = 0: 

alW' + a2W + blVU + b2V' + b3V + Aw2V = 0 (47) 

14 
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a3W -I- biV' k b5V + Aw2W = 0 

From Equation (48), one obtains 

w= gv' + fV 

where 

g = - b4/(a3+Aw2) and f= -b5/(a3+Aw2) 

Substitution of Equation (49) into Equation (47) gives 

GIVN + G2Vt + G3V = 0 

(48) 

(49) 

(50) 

where 

Gl = alg + bl 

G2 = alg' +alf +a2g +b2 

and 

G3 1 = a f' + a2f + b3 + Aw2 (51) 

According to Equations (28) and (29), the finite difference equations 

equivalent to Equation (50) becomes 

where 

Cr.>';V 
J j+l 

+ Bj‘"Vj + y.*v. 
J J-l= 

0 

aj* =Gli+% 
h2 2h 

(52) 

15 



B.” 2Glj 
J = G3j h2 

G1. G2. 

9 
*-.L$ 

A2 

when the shell is closed at the apex, v=O or V =O. 
0 The recurrence 

formulas for j = 1,2.*-N-1 becomes 

V. = R.*V 
J J j+l 

where 

Ra* = -(Bj* + y.*R+ -1 CYf 
J J J-l) j 

(53) 

(54) 

(55) 

and 

RO* = 0 (56) 

In order to allow the membrane state of stress to exist, only two 

types of boundary conditions are possible, namely 

(a) Simply supported: 

v= 0 or VN = 0 

Equation (52) corresponding to the station N-l is 

Q& VN + Pgel VN 1 + y; 1 VN 2 = 0 

(57) 

(58) 

Substituting the condition (57) into Equation (58) in conjunction 

with Equation (54), one obtains 

16 



The coefficient of VN 1 in Equation (59) contains the frequency, w, of 

the shell. Since the quantity VN 1, in general, does not equal to zero, 

hence the frequency equation becomes 

(b) Free edge: 

N =0 at 
w v = 'PO or 

Lq vN+l + q; VN - r:'c v "N N-l = 0 

where 

P” N-1 + y&l s-2 = ’ 

5, 2; ccos3 ‘PO -k = - - (cos3rpo + v cos cpo)g] 

1; = v cos cp 0 cot 'PO - (COS3Fo + v cos 'po>f 

Substituting Equation (54) into Equation (61), one obtains 

(61) 

(62) 

(633 

(64) 

The frequency equation, therefore, becomes 

Qf$l - sml RN) + "'1; R; = 0 (65) 

An iterative procedure may be used for the determination of the 

natural frequencies from Equations (60) or (65) whenever applicable. 

17 



'DISCUSSIONS 

The differential equations governing the axisymmetric motion of 

paraboloidal shells of revolution according to linear bending theory as 

well as membrane theory are presented. A finite difference technique 

proposed for the determination of the natural frequency of the shell is 

believed to be feasible for practical application. 
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